
pseudopeople Documentation
Release 1.0.1.dev7+g6d51849

The pseudopeople developers

Apr 16, 2024

CONTENTS

1 Quickstart 3

2 What’s next? 7
2.1 Tutorials . 7
2.2 Datasets . 11
2.3 Simulated populations . 23
2.4 Noise . 25
2.5 Configuration . 37
2.6 API Reference . 39
2.7 Glossary . 45

Bibliography 47

Python Module Index 49

Index 51

i

ii

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

pseudopeople is a Python package that generates realistic simulated data about a fictional United States population,
designed for use in testing entity resolution (record linkage) methods or other data science algorithms at scale.

Simulated: These are made-up people! No need to worry about confidentiality.
Versatile: Generate multiple datasets about the same population: censuses, surveys, and administrative records.
✓✓✓ Verifiable: Ground-truth unique identifiers are present in every dataset for checking link correctness.
Customizable: Configure the levels of noise in each dataset.
Full-scale: Supports generating datasets at the size of the real-life US population.

The fictional US population was generated by stochastically simulating multiple decades of population dynamics such
as fertility, mortality, migration and employment. pseudopeople builds on this fictional population data by simulating
errors in the data collection process to create realistic, noisy datasets.

pseudopeople is currently in a public beta release. Things are still in flux! If you notice any issues, please let us know
on GitHub.

The Simulation Science Team of the University of Washington’s Institute for Health Metrics and Evaluation is ex-
cited to introduce pseudopeople, the Python package that simplifies entity resolution research and development. This
package generates large-scale, simulated population data according to specifications by the user, to replicate a range of
complexities found in real applications of probabilistic record linkage software. With sensitive data often required for
entity resolution, accessing and testing new methods and software has been a challenge — until now. Our innovative
approach creates realistic, simulated data including name, address, and date of birth, without compromising privacy.

Our work builds on the success of previous data synthesis projects, such as FEBRL, GeCo, and SOG, and generates
a simulated population using real, publicly accessible data about the US population by leveraging the power of our
simulation platform Vivarium.

Want to know more about pseudopeople? Please visit the pseudopeople project website, where you can find out more
about the principles and processes underlying this work.

CONTENTS 1

https://github.com/ihmeuw/pseudopeople/issues
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/manual.html
https://dl.acm.org/doi/10.1145/2505515.2508207
https://web.archive.org/web/20170830050229/http:/mitiq.mit.edu/ICIQ/Documents/IQ%20Conference%202009/Papers/3-B.pdf
https://vivarium.readthedocs.io/en/latest/
https://www.pseudopeople.org/

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2 CONTENTS

CHAPTER

ONE

QUICKSTART

pseudopeople requires a version of Python between 3.8 and 3.11 (inclusive) to be installed. Once Python is installed,
you can install pseudopeople with pip by running the command:

$ pip install pseudopeople

Or, you can install from source on the pseudopeople GitHub repository.

Then, generate a small-scale simulated decennial census:

$ python

>>> import pseudopeople as psp
>>> census = psp.generate_decennial_census()
>>> census

simulant_id household_id first_name middle_initial last_name age date_of_birth ..
→˓. state zipcode housing_type relationship_to_reference_person sex race_ethnicity ␣
→˓year
0 0_2 0_7 Diana P Kelly 25 05/06/1994 ..
→˓. WA 00000 Household Reference person Female NaN ␣
→˓2020
1 0_3 0_7 Anna A Kelly 25 09/29/1994 ..
→˓. WA 00000 Household Other relative Female White ␣
→˓2020
2 0_923 0_8033 Gerald R Allen 76 11/03/1943 ..
→˓. WA 00000 Household Reference person Male Black ␣
→˓2020
3 0_2641 0_1066 Loretta T Lowe 61 06/01/1958 ..
→˓. WA 00000 Household Reference person Female White ␣
→˓2020
4 0_2801 0_1138 Richard R Pinard 73 03/03/1947 ..
→˓. WA 00000 Household Reference person Male White ␣
→˓2020
...
→˓. ␣
→˓...
10215 0_18969 0_7630 Patty E Palmisano 87 01/11/1933 ..
→˓. WA 00000 Household Opposite-sex spouse Female White ␣
→˓2020
10216 0_19008 0_8361 John V Skeeter 58 12/29/1961 ..
→˓. WA 00000 Household Reference person Male Black ␣
→˓2020

(continues on next page)

3

https://www.python.org/
https://pip.pypa.io/en/stable/
https://github.com/ihmeuw/pseudopeople

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

(continued from previous page)

10217 0_20165 0_7999 Kimberly K Suitt 65 04/05/1955 ..
→˓. WA 00000 Household Reference person Female White ␣
→˓2020
10218 0_19020 0_8130 Virginia G Hoover 93 10/02/1926 ..
→˓. WA 00000 Household Reference person Female White ␣
→˓2020
10219 0_20163 0_7998 Victoria R Simmons 27 04/21/1992 ..
→˓. WA 00000 Household Reference person Female White ␣
→˓2020

[10220 rows x 18 columns]

And W-2 and 1099 tax forms from the same simulated population:

>>> taxes = psp.generate_taxes_w2_and_1099()
>>> taxes

simulant_id household_id employer_id ssn wages ... mailing_address_city␣
→˓mailing_address_state mailing_address_zipcode tax_form tax_year
0 0_4 0_8 95 584-16-0130 10192 ... Anytown ␣
→˓ WA 00000 W2 2020
1 0_5 0_8 29 854-13-6295 28355 ... Anytown ␣
→˓ WA 00000 W2 2020
2 0_5 0_8 30 854-13-6295 18243 ... Anytown ␣
→˓ WA 00000 W2 2020
3 0_5621 0_2289 46 674-27-1745 7704 ... Anytown ␣
→˓ WA 00000 W2 2020
4 0_5623 0_2289 83 794-23-1522 3490 ... Anytown ␣
→˓ WA 00000 W2 2020
... ␣
→˓
9911 0_18936 0_7621 23 006-92-7857 9585 ... Anytown ␣
→˓ WA 00000 W2 2020
9912 0_18936 0_7621 90 006-92-7857 57906 ... Anytown ␣
→˓ WA 00000 W2 2020
9913 0_18937 0_7621 1 182-82-5017 19609 ... Anytown ␣
→˓ WA NaN 1099 2020
9914 0_18937 0_7621 105 182-82-5017 8061 ... Anytown ␣
→˓ WA 00000 1099 2020
9915 0_18939 0_7621 9 283-97-5940 4961 ... Anytown ␣
→˓ WA 00000 W2 2020

[9916 rows x 24 columns]

The simulated people in these datasets are called “simulants.” Both datasets have a simulant_id column that uniquely
identifies an individual. The unique simulant_id present in both datasets provides us with a truth deck, which we
wouldn’t have for a linkage task with real, sensitive data.

Note that in the small-scale simulated population that is available by default, these addresses all have their city/state/zip
code set to the fictitious location of Anytown, WA 00000. To read more about obtaining large-scale data with more
realistic city, state, and zip code data, please see Simulated populations.

>>> # To find how many matches there are between records about a given simulant,
>>> # we need to multiply the number of records about that simulant in the census by

(continues on next page)

4 Chapter 1. Quickstart

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

(continued from previous page)

>>> # the number of records about that simulant in taxes
>>> true_matches = census.groupby("simulant_id").size().multiply(
... taxes.groupby("simulant_id").size(), fill_value=0
...).sum().astype(int)
>>> print(f"There are {true_matches:,} true matches to find between these datasets!")
There are 9,034 true matches to find between these datasets!

Now, see how many your record linkage method can find – without access to the truth deck, of course!

Not linking in Python? Just save your datasets as files, for example CSV files:

>>> census.to_csv('census.csv')
>>> taxes.to_csv('taxes.csv')

Now you can load these datasets in any environment that can read CSV.

5

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

6 Chapter 1. Quickstart

CHAPTER

TWO

WHAT’S NEXT?

Now that you’ve generated a simulated dataset with pseudopeople, here are some next steps:

• To get started with customizing the noise in your datasets, try out the tutorial on configuring noise.

• To learn more about the kinds of simulated datasets that are available, check out our Datasets page.

• If you need larger datasets with millions instead of thousands of rows, take a look at the Simulated populations
page.

• To dive deeper into noise, read the docs about noise and noise configuration.

• To stay informed and recieve updates about this software package join the mailing list here.

2.1 Tutorials

Here you’ll find a set of tutorials that provide step-by-step instructions for common tasks using the pseudopeople
package.

2.1.1 Configuring Noise

In this tutorial, we will walk through an example of how to customize the amount of noise in a simulated dataset
generated by pseudopeople.

If you haven’t already used pseudopeople to generate a dataset with the default settings, follow the Quickstart before
continuing with this tutorial.

The problem of fake names

Sometimes when people respond to a survey, they don’t want to share their personal information. If the survey (whether
online, on paper, or in person) requires a response, they might just make something up.

pseudopeople has a noise type to simulate these sorts of responses for first and/or last names: “Use a fake name.” With
pseudopeople’s default settings, this happens just 1% of the time. But let’s say we’re concerned it will happen more
often in the future, and we want to see how robust our entity resolution methods are to this issue.

7

https://mailman11.u.washington.edu/mailman/listinfo/pseudopeople-users

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Generating a simulated Current Population Survey

Let’s generate some 2025 Current Population Survey (CPS) data in a future scenario where 30% of people
use fake last names on the survey. To do this, we will pass some configuration to the pseudopeople.
generate_current_population_survey() function.

cps_2025 = psp.generate_current_population_survey(year=2025, config={
'current_population_survey': {

'column_noise': {
'last_name': {

'use_fake_name': {
'cell_probability': 0.3,

},
},

},
},

})

In English, our configuration says: in the CPS dataset, for the last name column, the fake name noise type’s cell
probability parameter should be 0.3 (30%). The full set of parameters for each noise type is documented at Noise
Type Details. The column_noise key specifies that we are configuring column-based noise; the categories of noise
are explained in more detail on the noise page.

Let’s take a look at the names in our generated CPS dataset:

>>> cps_2025[['first_name', 'middle_initial', 'last_name']]
first_name middle_initial last_name

0 Gregory J Four
1 Bridgette J Kennedy
2 William G Phillips
3 Valerie M Male
4 Molly A Wheeler
5 Thomas K Eastep
6 Kenneth C Harper
7 Daniel M Harper
8 Susan M Adult
9 Dorothy P Gaytan
10 Daisy R Williams
11 Mark T Rock
12 Mohamed C Person
13 Giselle L Weber
14 Jean F Stull
15 Lila L C
16 Carli G Mckamey
17 Justin B E
18 Ana S Davidson Granados
19 Rose K Carrillo
20 Nayeli A Carrillo
21 Robert O Carrillo
22 Emilio P Carrillo
23 Mindy K Walton
24 Lee J Household
25 Janautica K Clapper
26 Tanner M Clapper

(continues on next page)

8 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

(continued from previous page)

27 Helen K Of The Home
28 Tonya A Y
29 Chris C Frazier
30 Arnold J Friend
31 Patricia C Wife
32 Jessie L Madden
33 Laura V Fortenberry
34 Zaid B Fortenberry
35 Sammy R Mcfarlan

As expected, we see a number of strings in the last name column that are unlikely to be true last names. We can check
exactly which ones are fake names by comparing to the same dataset without fake name noise in the last name column.
For brevity, we do not show the steps to do this here, but we would find that there are eleven such strings, which is
almost exactly 30% of our 36 respondents.

Increasing noise in first names

Imagine we also want to increase the probability of a fake first name from its default of 1%. We can do this by modifying
the configuration dictionary. This time, we’ll save the configuration dictionary to a variable before using it to generate
the dataset:

config = {
'current_population_survey': {

'column_noise': {
'last_name': {

'use_fake_name': {
'cell_probability': 0.3,

},
},
'first_name': {

'use_fake_name': {
'cell_probability': 0.2,

},
},

},
},

}
cps_2025 = psp.generate_current_population_survey(year=2025, config=config)

By specifying multiple keys within column_noise, we are able to independently adjust noise settings for different
columns. Here we have set the probability of a fake first name to 0.2 (20%) while retaining the 0.3 (30%) probability
of a fake last name. Let’s see how our CPS data look now:

>>> cps_2025[['first_name', 'middle_initial', 'last_name']]
first_name middle_initial last_name

0 Gregory J Four
1 Bridgette J Kennedy
2 William G Phillips
3 Valerie M Male
4 Molly A Wheeler
5 Thomas K Eastep
6 Man In The C Harper

(continues on next page)

2.1. Tutorials 9

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

(continued from previous page)

7 Man M Harper
8 R M Adult
9 Granddaughter P Gaytan
10 G R Williams
11 Mark T Rock
12 Girl C Person
13 Giselle L Weber
14 Friend F Stull
15 Lila L C
16 Carli G Mckamey
17 Justin B E
18 Ana S Davidson Granados
19 Rose K Carrillo
20 Son Of A Carrillo
21 Sister O Carrillo
22 Emilio P Carrillo
23 Mindy K Walton
24 Lee J Household
25 Janautica K Clapper
26 Tanner M Clapper
27 Helen K Of The Home
28 Tonya A Y
29 Chris C Frazier
30 Arnold J Friend
31 Brother C Wife
32 House L Madden
33 T V Fortenberry
34 Zaid B Fortenberry
35 H R Mcfarlane

Here we see that 13 respondents have used fake first names. Why aren’t there closer to 0.2*36 = 7.2 respondents with
fake first names? Remember that the parameter we set was called cell probability – there is randomness involved in
whether or not each cell in the column actually receives noise.

An alternate format for configuration

It is also possible to specify configuration in a YAML file. The file equivalent to our final configuration above would
be:

Listing 1: configuration_example.yaml

current_population_survey:
column_noise:
last_name:
use_fake_name:
cell_probability: 0.3

first_name:
use_fake_name:
cell_probability: 0.2

If configuration_example.yaml is in the current working directory, it can be used like so:

10 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

cps_2025 = psp.generate_current_population_survey(year=2025, config='configuration_
→˓example.yaml')

For more on configuration, see the Configuration page.

2.2 Datasets

Here we cover the realistic simulated datasets, which are analogous to “real world” administrative records such as tax
documents and routinely generated files of social security numbers, that users can generate using Pseudopeople for
developing and testing Entity Resolution algorithms and software.

Each of the datasets that can be generated using pseudopeople has “noise” added to it, thereby realistically simulating
how population data can be corrupted or distorted, which creates challenges in linking those records. To read more
about the different kinds of noise that can be applied to the different datasets, please see the Noise page.

pseudopeople generates datasets about a single simulated US population, which is followed through time between
January 1st, 2019 and May 1st, 2041. Most datasets are yearly and can be generated for any year between 2019 and
2041 (inclusive), though 2041 data will be partial.

There are two kinds of street addresses present in pseudopeople datasets: physical addresses and mailing addresses.
A physical address represents the physical location where a simulant lives, which is where they are recorded in the
Decennial Census and surveys. A mailing address represents the address a simulant uses to receive mail, which may
be different – for example, a PO box. Mailing addresses, not physical addresses, are recorded in tax filings.

Note that in the small-scale simulated population that is available by default, these addresses all have their city/state/zip
code set to the fictitious location of Anytown, WA 00000. This is to ensure that linking is not unrealistically easy
with the sample population (i.e., using these attributes to eliminate clear non-matches is not possible, as they are all
identical). To read more about obtaining large-scale data with more realistic city, state, and zip code data, please see
Simulated populations.

Some fields are not applicable to every record in a simulated dataset, so some columns may contain “missing” values,
even if no noise has been added to the data. For example, most addresses do not have a unit number, and some do
not have a street number, so the unit_number and/or street_number fields will be “missing” for many rows in any
dataset that contains addresses. Similarly, columns pertaining to spouse or dependents in the 1040 tax dataset are not
applicable to every simulant, so these columns also contain missing values. Values that are missing because they are
not applicable are represented by numpy.nan.

The datasets that can be generated are listed below.

• US Decennial Census

• American Community Survey (ACS)

• Current Population Survey (CPS)

• Women, Infants, and Children (WIC)

• Social Security Administration

• Tax forms: W-2 & 1099

• Tax form: 1040

2.2. Datasets 11

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.2.1 US Decennial Census

The Decennial Census dataset is a simulated enumeration of the US Census Bureau’s Decennial Census of Population
and Housing. To find out more about the Decennial Census, please visit the Decennial Census homepage.

It is only possible to generate Decennial Census data for decennial years – 2020, 2030, and 2040.

Generate Decennial Census data with pseudopeople.generate_decennial_census().

The following columns are included in this dataset:

12 Chapter 2. What’s next?

https://www.census.gov/programs-surveys/decennial-census.html

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 1: Dataset columns

At-
tribute
Name

Col-
umn
Name

Notes

Unique
sim-
ulant
ID

simulant_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

Unique
house-
hold
ID

household_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

First
name

first_name

Mid-
dle
initial

middle_initial

Last
name

last_name

Age age Rounded down to an integer.
Date
of
birth

date_of_birthFormatted as MM/DD/YYYY.

Phys-
ical
ad-
dress
street
num-
ber

street_number

Phys-
ical
ad-
dress
street
name

street_name

Phys-
ical
ad-
dress
unit
num-
ber

unit_number

Phys-
ical
ad-
dress
city

city Default simulated population always has value “Anytown”

Phys-
ical
ad-
dress
state

state Default simulated population always has value “WA”

Phys-
ical
ad-
dress
ZIP
code

zipcode Default simulated population always has value “00000”

Hous-
ing
type

housing_typePossible values for housing type are “Household” for an individual household, or one of six
different types of group quarters. The types of institutional group quarters are “Carceral”,
“Nursing home”, and “Other institutional”. The types of noninstitutional group quarters are
“College”, “Military”, and “Other noninstitutional”.

Rela-
tion-
ship
to
refer-
ence
per-
son

relationship_to_reference_personPossible values for this field include: “Reference person”; “Opposite-sex spouse”; “Opposite-
sex unmarried partner”; “Same-sex spouse”; “Same-sex unmarried partner”; “Biological
child”; “Adopted child”; “Stepchild”; “Sibling”; “Parent”; “Grandchild”; “Parent-in-law”;
“Child-in-law”; “Other relative”; “Roommate or housemate”; “Foster child”; “Other nonrel-
ative”; “Institutionalized group quarters population”; and “Noninstitutionalized group quarters
population”.

Sex sex Binary; “male” or “female”.
Race/ethnicityrace_ethnicityThe categories for the single composite “race/ethnicity” field are as follows: “White”; “Black”;

“Latino”; “American Indian and Alaskan Native (AIAN)”; “Asian”; “Native Hawaiian and
Other Pacific Islander (NHOPI)”; and “Multiracial or Some Other Race”.

Year year Year in which data were collected; metadata that would not be collected directly; not affected
by noise.

2.2. Datasets 13

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.2.2 American Community Survey (ACS)

ACS is one of two household surveys that can currently be simulated using Pseudopeople. ACS is an ongoing household
survey conducted by the US Census Bureau that gathers information on a rolling basis about American community
populations. Information collected includes ancestry, citizenship, education, income, language proficienccy, migration,
employment, disability, and housing characteristics. To find out more about ACS, please visit the ACS homepage.

pseudopeople can generate ACS data for a user-specified year, which will include records from simulated surveys
conducted throughout that calendar year.

Generate ACS data with pseudopeople.generate_american_community_survey().

The following columns are included in this dataset:

14 Chapter 2. What’s next?

https://www.census.gov/programs-surveys/acs/about.html

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 2: Dataset columns

At-
tribute
Name

Col-
umn
Name

Notes

Unique
sim-
ulant
ID

simulant_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

Unique
house-
hold
ID

household_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

Sur-
vey
date

survey_dateDate on which the survey was conducted; metadata that would not be collected directly; not
affected by noise. Stored as a pandas.Timestamp, which displays in YYYY-MM-DD format
by default.

First
name

first_name

Mid-
dle
initial

middle_initial

Last
name

last_name

Age age Rounded down to an integer.
Date
of
birth

date_of_birthFormatted as MM/DD/YYYY.

Phys-
ical
ad-
dress
street
num-
ber

street_number

Phys-
ical
ad-
dress
street
name

street_name

Phys-
ical
ad-
dress
unit
num-
ber

unit_number

Phys-
ical
ad-
dress
city

city Default simulated population always has value “Anytown”

Phys-
ical
ad-
dress
state

state Default simulated population always has value “WA”

Phys-
ical
ad-
dress
ZIP
code

zipcode Default simulated population always has value “00000”

Hous-
ing
type

housing_typePossible values for housing type are “Household” for an individual household, or one of six
different types of group quarters. The types of institutional group quarters are “Carceral”,
“Nursing home”, and “Other institutional”. The types of noninstitutional group quarters are
“College”, “Military”, and “Other noninstitutional”.

Rela-
tion-
ship
to
refer-
ence
per-
son

relationship_to_reference_personPossible values for this field include: “Reference person”; “Opposite-sex spouse”; “Opposite-
sex unmarried partner”; “Same-sex spouse”; “Same-sex unmarried partner”; “Biological
child”; “Adopted child”; “Stepchild”; “Sibling”; “Parent”; “Grandchild”; “Parent-in-law”;
“Child-in-law”; “Other relative”; “Roommate or housemate”; “Foster child”; “Other nonrel-
ative”; “Institutionalized group quarters population”; and “Noninstitutionalized group quarters
population”.

Sex sex Binary; “male” or “female”
Race/ethnicityrace_ethnicityThe categories for the single composite “race/ethnicity” field are as follows: “White”; “Black”;

“Latino”; “American Indian and Alaskan Native (AIAN)”; “Asian”; “Native Hawaiian and
Other Pacific Islander (NHOPI)”; and “Multiracial or Some Other Race”.

2.2. Datasets 15

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.2.3 Current Population Survey (CPS)

CPS is another household survey that can be simulated using Pseudopeople. CPS is conducted jointly by the US Census
Bureau and the US Bureau of Labor Statistics. CPS collects labor force data, such as annual work activity and income,
veteran status, school enrollment, contingent employment, worker displacement, job tenure, and more. To find out
more about CPS, please visit the CPS homepage.

pseudopeople can generate CPS data for a user-specified year, which will include records from simulated surveys
conducted throughout that calendar year.

Generate CPS data with pseudopeople.generate_current_population_survey().

The following columns are included in this dataset:

16 Chapter 2. What’s next?

https://www.census.gov/programs-surveys/cps.html

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 3: Dataset columns

Attribute
Name

Col-
umn
Name

Notes

Unique
simulant
ID

simulant_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

Unique
household
ID

household_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

Survey
date

survey_dateDate on which the survey was conducted; metadata that would not be collected directly;
not affected by noise. Stored as a pandas.Timestamp, which displays in YYYY-MM-DD
format by default.

First name first_name
Middle
initial

middle_initial

Last name last_name
Age age Rounded down to an integer.
Date of
birth

date_of_birthFormatted as MM/DD/YYYY.

Physical
address
street
number

street_number

Physical
address
street
name

street_name

Physical
address
unit num-
ber

unit_number

Physical
address
city

city Default simulated population always has value “Anytown”

Physical
address
state

state Default simulated population always has value “WA”

Physical
address
ZIP code

zipcodeDefault simulated population always has value “00000”

Sex sex Binary; “male” or “female”
Race/ethnicityrace_ethnicityThe categories for the single composite “race/ethnicity” field are as follows: “White”;

“Black”; “Latino”; “American Indian and Alaskan Native (AIAN)”; “Asian”; “Native
Hawaiian and Other Pacific Islander (NHOPI)”; and “Multiracial or Some Other Race”.

2.2. Datasets 17

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.2.4 Women, Infants, and Children (WIC)

The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) is a government benefits pro-
gram designed to support mothers and young children. The main qualifications are income and the presence of young
children in the home. To find out more about this service, please visit the WIC homepage.

pseudopeople can generate a simulated version of the administrative data that would be recorded by WIC. This is a
yearly file of information about all simulants enrolled in the program as of the end of that year. For the final year
available, 2041, the file includes those enrolled as of May 1st, because this is the end of our simulated timespan.

Generate WIC data with pseudopeople.generate_women_infants_and_children().

The following columns are included in this dataset:

18 Chapter 2. What’s next?

https://www.fns.usda.gov/wic

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 4: Dataset columns

Attribute
Name

Col-
umn
Name

Notes

Unique
simulant
ID

simulant_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

Unique
household
ID

household_idNot affected by noise; intended use is “ground truth” for testing and validation; consistent
across all datasets.

First name first_name
Middle
initial

middle_initial

Last name last_name
Date of
birth

date_of_birthFormatted as MMDDYYYY.

Physical
address
street
number

street_number

Physical
address
street
name

street_name

Physical
address
unit num-
ber

unit_number

Physical
address
city

city Default simulated population always has value “Anytown”

Physical
address
state

state Default simulated population always has value “WA”

Physical
address
ZIP code

zipcodeDefault simulated population always has value “00000”

Sex sex Binary; “male” or “female”
Race/ethnicityrace_ethnicityThe categories for the single composite “race/ethnicity” field are as follows: “White”;

“Black”; “Latino”; “American Indian and Alaskan Native (AIAN)”; “Asian”; “Native
Hawaiian and Other Pacific Islander (NHOPI)”; and “Multiracial or Some Other Race”.

Year year Year in which benefits were received; metadata that would not be collected directly; not
affected by noise.

2.2. Datasets 19

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.2.5 Social Security Administration

The Social Security Administration (SSA) is the US federal government agency that administers Social Security, the
social insurance program that consists of retirement, disability and survivor benefits. To find out more about this
program, visit the SSA homepage.

pseudopeople can generate a simulated version of a subset of the administrative data that would be recorded by SSA.
Currently, the simulated SSA data includes records of SSN creation and dates of death. This is a yearly data file that is
cumulative – when you specify a year, you will recieve all records up to the end of that year.

The simulated SSA data files will not include records about simulants who died before 2019 (the start of our simulated
timespan). Therefore, while SSA data files can be generated for years prior to 2019, they will only include records for
SSN creation, and only for simulants who were still alive in 2019.

Generate SSA data with pseudopeople.generate_social_security().

The following columns are included in this dataset:

Table 5: Dataset columns

Attribute
Name

Column
Name

Notes

Unique simu-
lant ID

simulant_idNot affected by noise; intended use is “ground truth” for testing and validation; con-
sistent across all datasets.

Social security
number

ssn By default, the SSN column in the SSA dataset has no column-based noise. How-
ever, it can be configured to have noise if desired.

First name first_name
Middle name middle_name
Last name last_name
Date of birth date_of_birthFormatted as YYYYMMDD.
Sex sex Binary; “male” or “female”
Type of event event_type Possible values are “Creation” and “Death”.
Date of event event_date Formatted as YYYYMMDD.

2.2.6 Tax forms: W-2 & 1099

Administrative data reported in annual tax forms, such as W-2s and 1099s, can also be simulated by Pseudopeople.
1099 forms are used for independent contractors or self-employed individuals, while a W-2 form is submitted by an
employer for their employee (as the employer withholds payroll taxes from employee earnings).

pseudopeople can generate a simulated version of the data collected by W-2 and 1099 forms. This is a yearly dataset,
where the user-specified year is the tax year of the data. That is, the data for 2022 will be the result of tax forms filed
in early 2023. Tax data can be generated for tax years 2019 through 2040 (inclusive).

Generate W-2 and 1099 data with pseudopeople.generate_taxes_w2_and_1099().

The following columns are included in these datasets:

20 Chapter 2. What’s next?

https://www.ssa.gov/about-ssa

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 6: Dataset columns

Attribute Name Column Name Notes
Unique simulant
ID

simulant_id Not affected by noise; intended use is “ground truth” for testing and
validation; consistent across all datasets.

Unique household
ID

household_id Not affected by noise; intended use is “ground truth” for testing and
validation; consistent across all datasets.

Employer ID employer_id
Social security
number

ssn

Wages wages
Employer Name employer_name
Employer street
number

employer_street_number

Employer street
name

employer_street_name

Employer unit
number

employer_unit_number

Employer city employer_city Default simulated population always has value “Anytown”
Employer state employer_state Default simulated population always has value “WA”
Employer ZIP
code

employer_zipcode Default simulated population always has value “00000”

First name first_name
Middle initial middle_initial
Last name last_name
Mailing address
street number

mailing_address_street_number

Mailing address
street name

mailing_address_street_name

Mailing address
unit number

mailing_address_unit_number

Mailing address
PO Box

mailing_address_po_box

Mailing address
city

mailing_address_cityDefault simulated population always has value “Anytown”

Mailing address
state

mailing_address_stateDefault simulated population always has value “WA”

Mailing address
ZIP code

mailing_address_zipcodeDefault simulated population always has value “00000”

Type of tax form tax_form Possible values are “W2” or “1099”.
Tax year tax_year Year for which tax data were collected; metadata that would not be

collected directly; not affected by noise.

2.2. Datasets 21

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.2.7 Tax form: 1040

As with data collected from W-2 and 1099 forms, pseudopeople enables the simulation of administrative records from
1040 forms, which are also reported to the IRS on an annual basis. While W-2 forms are submitted by an employer to
the IRS, 1040 forms are submitted by the employee. To find out more about the 1040 tax form, visit the IRS information
page.

A single row in a pseudopeople-generated 1040 dataset may contain information about several simulants: the primary
filer, the primary filer’s joint filer (spouse) if they are married filing jointly, and up to four claimed dependents. When
not applicable, all relevant fields are numpy.nan; for example, a row representing a 1040 filed by only one simulant,
without a joint filer, would have missingness in all joint filer columns.

If a simulant claims fewer than four dependents, they will be filled in starting with dependent_1. For example, a
simulant claiming three dependents would have missingness in all dependent_4 columns. A simulant may claim
more than four dependents, but only four will appear in the dataset; the rest are omitted.

All columns not otherwise labeled are about the primary filer; for example, the first_name column is the first name
of the primary filer. The simulant_id and household_id columns represent the “ground truth” of which simulant
is the primary filer, and which household that primary filer lives in. It is not guaranteed that all simulants described
in a 1040 row live in the same household; for example, college students may be claimed as dependents while living
elsewhere.

A single simulant can appear in multiple rows in this dataset, for example if they filed a 1040 and were also claimed as
a dependent on another simulant’s 1040.

This is a yearly dataset, where the user-specified year is the tax year of the data. 1040 data can be generated for tax
years 2019 through 2040 (inclusive).

Generate 1040 data with pseudopeople.generate_taxes_1040().

The following columns are included in this dataset:

Table 7: Dataset columns

Attribute Name Column Name Notes
Unique simulant ID simulant_id Not affected by noise; intended use is “ground truth” for testing and validation; consistent across all datasets.
Unique household ID household_id Not affected by noise; intended use is “ground truth” for testing and validation; consistent across all datasets.
First name first_name
Middle initial middle_initial
Last name last_name
Social Security Number (SSN) ssn Individual Taxpayer Identification Number (ITIN) if no SSN
Mailing address street number mailing_address_street_number
Mailing address street name mailing_address_street_name
Mailing address unit number mailing_address_unit_number
Mailing address PO box mailing_address_po_box
Mailing address city mailing_address_city Default simulated population always has value “Anytown”
Mailing address state mailing_address_state Default simulated population always has value “WA”
Mailing address ZIP code mailing_address_zipcode Default simulated population always has value “00000”
Joint filer first name spouse_first_name
Joint filer middle initial spouse_middle_initial
Joint filer last name spouse_last_name
Joint filer social security number spouse_ssn Individual Taxpayer Identification Number (ITIN) if no SSN
Dependent 1 first name dependent_1_first_name
Dependent 1 last name dependent_1_last_name
Dependent 1 Social Security Number (SSN) dependent_1_ssn Individual Taxpayer Identification Number (ITIN) if no SSN
Dependent 2 first name dependent_2_first_name

continues on next page

22 Chapter 2. What’s next?

https://www.irs.gov/instructions/i1040gi
https://www.irs.gov/instructions/i1040gi

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 7 – continued from previous page
Attribute Name Column Name Notes
Dependent 2 last name dependent_2_last_name
Dependent 2 social security number dependent_2_ssn Individual Taxpayer Identification Number (ITIN) if no SSN
Dependent 3 first name dependent_3_first_name
Dependent 3 last name dependent_3_last_name
Dependent 3 social security number dependent_3_ssn Individual Taxpayer Identification Number (ITIN) if no SSN
Dependent 4 first name dependent_4_first_name
Dependent 4 last name dependent_4_last_name
Dependent 4 social security number dependent_4_ssn Individual Taxpayer Identification Number (ITIN) if no SSN
Tax year tax_year Year for which tax data were collected; metadata that would not be collected directly; not affected by noise.

2.3 Simulated populations

pseudopeople generates multiple datasets about a simulated population which can be specified by the user when calling
the dataset generation functions. There are currently three simulated populations available for generating datasets with
pseudopeople:

• Sample population (a fictional population of ~10,000 simulants living in the fictional Anytown, WA, included
with the pseudopeople package)

• Rhode Island (a fictional population of ~1,000,000 simulants living in a simulated state of Rhode Island)

• United States (a fictional population of ~330,000,000 simulants living throughout a simulated United States)

When generating a dataset, pseudopeople uses the included sample population by default unless an explicit path to
another directory containing simulated population data is specified. See the sections below for more information about
accessing and using the larger simulated populations.

• Accessing the large-scale simulated populations

• Validating the simulated population data

• Using the simulated population data

Note: The simulated population data used by pseudopeople is the output of a Vivarium microsimulation and must
be in a specific format for the dataset generation functions to work. Vivarium uses real, publicly available data to
stochastically simulate multiple decades of population dynamics such as fertility, mortality, migration, and employment.
Then pseudopeople takes the simulated population data output by Vivarium and simulates the data collection process
with user-configurable noise added to the resulting datasets.

2.3.1 Accessing the large-scale simulated populations

To gain access to the larger-scale simulated populations (i.e., Rhode Island and United States), follow these steps:

1. Log in to GitHub (you must first create a GitHub account if you don’t have one).

2. Open a new Data access request using the template under the Issues tab on pseudopeople’s GitHub page.

3. Fill out the information on the access request form to tell us about your project. You can simply put “Data access
request” in the title field.

4. We will get back to you after we receive your request!

2.3. Simulated populations 23

https://vivarium.readthedocs.io/en/latest/
https://github.com/
https://github.com/ihmeuw/pseudopeople/issues/new?assignees=&labels=&template=data_access_request.yml
https://github.com/ihmeuw/pseudopeople/issues

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.3.2 Validating the simulated population data

Checksums can be used to validate that you’ve successfully downloaded the correct and uncorrupted zip file. The
following table provides the SHA-256 checksum for the larger-scale simulated population zip files:

Table 8: SHA-256 checksums

Location File SHA-256 checksum
Rhode Is-
land

pseudopeo-
ple_simulated_population_ri_2_0_1.zip

fadcbf40c87217f77f36f2c684a6a568460a1215696bc2f8a0c2069a00cdc78c

US pseudopeo-
ple_simulated_population_usa_2_0_0.zip

0025978196c2a84c1df502e857bec35a84c25092fbfb6b143c0b8ff30dea5eed

Rhode Is-
land

pseudopeo-
ple_simulated_population_ri_2_0_0.zip

bfec148c947096b44201a7961a1b38f63961cd820578f10a479f623d8d79f0d1

US pseudopeo-
ple_simulated_population_usa_1_0_0.zip

9462cc60b333fb2a3d16554a9e59b5428a81a2b1d2c34ed383883d7b68d2f89f

Rhode Is-
land

pseudopeo-
ple_simulated_population_ri_1_0_0.zip

d3f1ccdfbfca8b53254c4ceeb18afe17c3d3b3fe02f56cc20d1254f818c39435

If the SHA-256 checksum that you generate for the downloaded file matches the value provided above, you can be sure
you downloaded the file successfully.

Possibly the simplest way to verify checksums is to generate the value using the terminal/cmd command below (be
sure to replace PATH/TO/ZIP with the actual path to the zip you downloaded) and visually compare the result to the
values provided above. Note that if even the first few and last few characters match then it is very likely the entire string
matches.

Linux:

$ sha256sum PATH/TO/ZIP

Mac:

$ shasum -a 256 PATH/TO/ZIP

Windows:

$ CertUtil -hashfile PATH/TO/ZIP SHA256

Note: Generating the checksum can take a long time for larger files, e.g. several minutes for the Rhode Island dataset
and ~1 hour for the United States dataset.

If the generated checksum does not match the one provided in the table above, please try re-downloading the dataset.

If after downloading the file a second time the checksums still do not match, please open a Bug report using the template
under the Issues tab on pseudopeople’s GitHub page.

24 Chapter 2. What’s next?

https://en.wikipedia.org/wiki/Checksum
https://github.com/ihmeuw/pseudopeople/issues/new?assignees=&labels=&template=bug_report.yml
https://github.com/ihmeuw/pseudopeople/issues

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.3.3 Using the simulated population data

Once you’ve downloaded the large-scale simulated population (either Rhode Island or United States), unzip the contents
to the desired location on your computer.

Important: Do not modify the contents of the directory containing the unzipped simulated population data! Modifi-
cations to the pseudopeople simulated population data may cause the dataset generation functions to fail.

Once you’ve unzipped the simulated population data, you can pass the directory path to the source parameter of the
dataset generation functions to generate large-scale datasets!

2.4 Noise

In order to have a realistic challenge with entity resolution, it is essential to add noise to the simulated data. “Noise”
refers to various types of errors introduced into the data and may also be called “corruption” or “distortion.” By default,
pseudopeople applies noise to the simulated datasets using some reasonable settings. If desired, the user can change
the noise settings through the configuration system—see the Configuration section for details.

• Categories of noise

• Available noise types

• Noise types for each column

• Noise type details

2.4.1 Categories of noise

pseudopeople can add two broad categories of noise to the datasets it generates:

1. Row-based noise: Errors in the inclusion or exclusion of entire rows of data, such as duplication or omission

2. Column-based noise: Errors in data entry for an individual field within a row, such as miswriting or incorrectly
selecting responses

Each type of row-based noise operates on the entire dataset (selecting rows to include or exclude), while each type of
column-based noise operates on one column of data at a time (selecting cells within that column to noise). Currently,
errors added in different columns are independent of each other.

2.4.2 Available noise types

These tables list all the available noise types, but not every type of noise will necessarily be applied to every dataset or
every column. Noise types are applied in the order they are listed here. The “Config key” column shows the name of
the noise type in the configuration system.

2.4. Noise 25

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 9: Types of row-based noise (row_noise)

Noise type Config key Example cause
Dupli-
cate with
guardian

duplicate_with_guardianFilling out a survey questionnaire for your child that lives in college
housing, while they simultaneously fill out the same questionnaire for
themselves

Do not re-
spond

do_not_respond Not returning the American Community Survey questionnaire that the
US Census Bureau sent you

Omit a row omit_row Losing data because of an administrative error

Table 10: Types of column-based noise (column_noise)

Noise type Config key Example cause
Borrow
a social
security
number

Not configurable Using your housemate’s SSN on a W-2 because you do not have one

Leave a
field blank

leave_blank Forgetting to write your name on the designated line

Choose the
wrong op-
tion

choose_wrong_option Marking the “Male” box when you meant “Female”

Copy from
household
member

copy_from_household_memberAccidentally writing your daughter’s age in a box that asked about your
son’s age on a survey questionnaire

Use a nick-
name

use_nickname Writing ‘Alex’ instead of legal name ‘Alexander’

Use a fake
name

use_fake_name Using “Mr” rather than actual first name

Swap
month and
day

swap_month_and_day Reporting 17/05/1976 when a survey asks for the date in
MM/DD/YYYY format

Misreport
age

misreport_age Reporting that you are 28 years old when you are actually 27

Write the
wrong
digits

write_wrong_digits Writing “732 Main St” as your street address instead of “932 Main St”

Write the
wrong ZIP
code digits

write_wrong_zipcode_digitsWriting ZIP code 98118 when you actually live in 98112

Make pho-
netic errors

make_phonetic_errors Mishearing a ‘t’ for a ‘d’

Make
Optical
Character
Recogni-
tion (OCR)
errors

make_ocr_errors Misreading an ‘S’ instead of a ‘5’

Make typos make_typos Accidentally typing an “l” instead of a “k” because they are right next
to each other on a QWERTY keyboard

26 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.4. Noise 27

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.4.3 Noise types for each column

Table 11: Types of noise for each column

Column name Applicable datasets Types of noise Notes
First name Decennial Census, ACS,

CPS, WIC, W-2 and 1099,
1040, SSA

Leave a field blank, use
a nickname, use a fake
name, make phonetic er-
rors, make OCR errors,
make typos

In the 1040 form, the same
noise types apply to the
first name columns for the
joint filer and dependents

Middle name SSA Leave a field blank, use
a nickname, use a fake
name, make phonetic er-
rors, make OCR errors,
make typos

Middle names use the
same lists of nicknames
and fake names used for
first names

Middle initial Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, make
phonetic errors, make
OCR errors, make typos

In the 1040 form, the same
noise types apply to the
middle initial columns for
the joint filer and depen-
dents

Last name Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040, SSA

Leave a field blank, use a
fake name, make phonetic
errors, make OCR errors,
make typos

Last names use a differ-
ent list of fake names than
the list for first names. In
the 1040 form, the same
noise types apply to the
last name columns for the
joint filer and dependents

Age Decennial Census, ACS,
CPS

Leave a field blank, copy
from household member,
misreport age, make OCR
errors, make typos

Date of birth Decennial Census, ACS,
CPS, WIC, SSA

Leave a field blank, copy
from household member,
swap month and day, write
the wrong digits, make
OCR errors, make typos

Street number for any ad-
dress (physical, mailing,
or employer)

Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, write
the wrong digits, make
OCR errors, make typos

Noise for all types of ad-
dresses works in the same
way

Street name for any ad-
dress (physical, mailing,
or employer)

Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, make
phonetic errors, make
OCR errors, make typos

Noise for all types of ad-
dresses works in the same
way

Unit number for any ad-
dress (physical, mailing,
or employer)

Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, write
the wrong digits, make
OCR errors, make typos

Noise for all types of ad-
dresses works in the same
way

PO Box for mailing ad-
dress

W-2 and 1099, 1040 Leave a field blank, write
the wrong digits, make
OCR errors, make typos

City name for any address
(physical, mailing, or em-
ployer)

Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, make
phonetic errors, make
OCR errors, make typos

Noise for all types of ad-
dresses works in the same
way

State for any address
(physical, mailing, or
employer)

Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, choose
the wrong option

Noise for all types of ad-
dresses works in the same
way

ZIP code for any address
(physical, mailing, or em-
ployer)

Decennial Census, ACS,
CPS, WIC, W-2 and 1099,
1040

Leave a field blank, write
the wrong zipcode digits,
make OCR errors, make
typos

Housing type Decennial Census, ACS Leave a field blank, choose
the wrong option

Relationship to reference
person

Decennial Census, ACS Leave a field blank, choose
the wrong option

Sex Decennial Census, ACS,
CPS, WIC

Leave a field blank, choose
the wrong option

Race/ethnicity Decennial Census, ACS,
CPS, WIC

Leave a field blank, choose
the wrong option

SSN W-2 and 1099, 1040, SSA Borrow a social security
number, leave a field
blank, copy from house-
hold member, write the
wrong digits, make OCR
errors, make typos

Note that “borrow a so-
cial security number” only
applies to the W-2 and
1099 dataset, and by de-
fault, “copy from house-
hold member” noise is
turned off in this dataset
(but can be turned on if de-
sired). In the SSA dataset,
the SSN column has no
column-based noise by de-
fault (but can be config-
ured to have noise if de-
sired). In the 1040 form,
the same noise types apply
to the SSN columns for the
joint filer and dependents.

Wages W-2 and 1099 Leave a field blank, write
the wrong digits, make
OCR errors, make typos

Employer ID W-2 and 1099 Leave a field blank, write
the wrong digits, make
OCR errors, make typos

Employer name W-2 and 1099 Leave a field blank, make
OCR errors, make typos

Type of tax form W-2 and 1099 Leave a field blank, choose
the wrong option

Type of SSA event SSA Leave a field blank, choose
the wrong option

Date of SSA event SSA Leave a field blank, swap
month and day, write the
wrong digits, make OCR
errors, make typos

28 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.4.4 Noise type details

For more details on the different row-based and column-based noise types covered above, please follow the links below.

Row-based Noise

Row-based noise operates on one row of data at a time, for example by omitting or duplicating entire rows.

Types of row-based noise:

• Duplicate with guardian

• Do not respond

• Omit a row

Duplicate with guardian

A known challenge in entity resolution is people being reported multiple times at different addresses. This can occur
when family structures are complex and children spend time at multiple households. A related challenge occurs with
college students, who are sometimes counted both at their university and at their guardian’s home address.

To simulate such challenges, pseudopeople can apply this type of duplication to two mutually exclusive categories of
simulants based on age and GQ status: Simulants younger than 18 and not in GQ and simulants under 24 and in college
GQ.

For each of the two categories of simulants, a maximum duplication rate will be calculated based on those who have
a guardian living at a different address. Most simulants in college GQ will have a guardian at a different address, but
most simulants younger than 18 will not. If you as the user select a duplication rate that is higher than the calculated
maximum rate, you will see a warning that the requested rate is greater than the maximum possible.

This noise type is called duplicate_with_guardian in the configuration. It takes two parameters:

Table 12: Parameters to the duplicate_with_guardian noise type

Parame-
ter

Description Default

row_probability_in_households_under_18The probability that a simulant under 18 in a household is
recorded twice.

0.02 (2%)

row_probability_in_college_group_quarters_under_24The probability that a simulant under 24 in college GQ is
recorded twice.

0.05 (5%)

Do not respond

Sometimes people don’t respond to a census or survey questionnaire and are unable to be reached by other means such
as telephone or personal visit. For the Decennial Census and household surveys such as the ACS and CPS, people are
found to respond at different rates depending on demographics such as age, sex, and race or ethnicity.

For each demographic subgroup in pseudopeople, we assumed the nonresponse rate in the Decennial Census was equal
to the net rate of undercount (ignoring duplication) estimated in [Census_PES]. Net undercount effects of age/sex
were combined additively with the effects of race/ethnicity, and demographic subgroups with resulting net overcounts
(negative nonresponse rates) were given a nonresponse rate of 0. We assumed nonresponse in the ACS was the same as
in the Decennial Census, since these are conducted similarly. By contrast, the CPS uses only phone calls and personal

2.4. Noise 29

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

visits but not mail/online questionnaires. Thus we assumed that CPS had the same nonresponse pattern as the Decennial
Census, but with a constant 27.6% added to the nonresponse rates due to this survey having fewer contact modes, as
that was the nonresponse rate for CPS reported for July 2022 in [Response_Rates_BLS].

To simulate nonresponse bias in the Decennial Census and the ACS or CPS, the user can choose an overall rate of
nonresponse, and pseudopeople will scale the nonresponse rates for different demographic subgroups so that the overall
average rate approximately matches the target. The default overall rates were calculated from our simulated population
after applying the nonresponse rates derived from [Census_PES] and [Response_Rates_BLS] to each demographic
subgroup as described above.

This noise type is called do_not_respond in the configuration. It takes one parameter:

Table 13: Parameters to the do_not_respond noise type

Parame-
ter

Description Default

row_probabilityThe probability that a simulant does not respond to the census
or survey. • 0.0145 (1.45%) for the Decen-

nial Census and ACS
• 0.2905 (29.05%) for CPS

Omit a row

Sometimes an entire record may be missing from a dataset where one would normally expect to find it. For example, a
WIC record could be missing by mistake because of an administrative error, or someone’s tax record could be missing
because they didn’t file their taxes on time.

This noise type is called omit_row in the configuration. It takes one parameter:

Table 14: Parameters to the omit_row noise type

Parame-
ter

Description Default

row_probabilityThe probability that a row is missing from the dataset.
• 0.005 (0.5%) for WIC and tax

forms W2 and 1099
• 0.0 (0%) for other datasets

When applying omit_row noise, each row of data is selected for omission independently with probability
row_probability.

Column-based Noise

Column-based noise operates on one column of data at a time, introducing errors to individual cells within the column.

In pseudopeople, column-based noise is currently performed independently between columns. For example, a simulant
making a typo in their first name on the decennial Census doesn’t make them any more likely to make a typo in their
last name as well, even though in real life we might expect these things to be related.

Column-based noise is also unrelated to attributes of the simulant or record. For example, a simulant who is 20 is just
as likely to misreport their age as a simulant who is 75.

These are both areas where we may add more complexity in future versions of pseudopeople.

30 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Types of column-based noise:

• Borrow a social security number

• Leave a field blank

• Choose the wrong option

• Copy from household member

• Use a nickname

• Use a fake name

• Swap month and day

• Misreport age

• Write the wrong digits

• Write the wrong ZIP code digits

• Make phonetic errors

• Make optical character recognition (OCR) errors

• Make typos

Borrow a social security number

The W-2 and 1099 tax forms require a Social Security Number (SSN). Many people who are employed in the US do
not have an SSN, but they or their employer still file W-2 or 1099 forms, presumably using someone else’s SSN or a
made-up SSN.

As a simple way to replicate this behavior, when a simulant without an SSN has a W-2 or 1099 filed, pseudopeople
uses an SSN borrowed from a randomly selected simulant in their household who does have one. If there is nobody in
their household with an SSN, a totally random SSN is created and used on the form.

This type of noise cannot be configured. It is always present on all W-2 and 1099 forms about a simulant who does not
have an SSN.

Leave a field blank

Often some of the data in certain columns of a dataset will be missing. This could be because the input for that field
was left blank, an answer was refused, or the answer was illegible or unintelligible. To simulate this type of noise,
pseudopeople will replace the value in the relevant cell with numpy.nan to indicate that the value is missing.

It is important to note, however, that some columns in the generated data may contain missing values, even if no noise
has been added to the data, simply because the column is not applicable to every row. Columns that may have missing
values regardless of noise include unit number, street number, and any columns pertaining to spouse or dependents in
the 1040 tax dataset, for example. In these cases where fields are blank even without noise, missing values are also
represented by numpy.nan.

This noise type is called leave_blank in the configuration. It takes one parameter:

2.4. Noise 31

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Table 15: Parameters to the leave_blank noise type

Parameter Description Default
cell_probabilityThe probability that a cell in the column being configured is blank. 0.01 (1%)

Choose the wrong option

If a question on a survey or administrative form provides a list of options, respondents may sometimes choose the
wrong option, either intentionally or by mistake. pseudopeople simulates this type of noise by sometimes selecting
an incorrect option for columns that would have a list of options. All wrong options are equally likely. The possible
values to select from depend on the column: the Datasets page lists them for each applicable column in pseudopeople’s
datasets.

This noise type is called choose_wrong_option in the configuration. It takes one parameter:

Table 16: Parameters to the choose_wrong_option noise type

Parameter Description Default
cell_probabilityThe probability that, for a cell in the column being configured, the wrong option

is chosen.
0.01 (1%)

Copy from household member

When responding to a survey or filling out a form, someone might accidentally or purposely answer a question about one
household member with information about a different household member. To capture this type of error, pseudopeople
can fill in certain fields about a simulant with values from a different member of the simulant’s household, chosen at
random. This type of noise can be applied to ages, dates of birth, and social security numbers.

Note that simulants who live in group quarters or who live alone are not eligible for this type of noise, so for each
dataset, there is some maximum fraction of rows to which “copy from household member” noise can be applied. If
the user requests a cell probability that is larger than what’s possible, pseudopeople will add noise to the maximum
possible number of rows.

This noise type is called copy_from_household_member in the configuration. It takes one parameter:

Table 17: Parameters to the copy_from_household_member noise type

Parameter Description Default
cell_probabilityThe probability that, for a cell in the column being configured, the cell’s value is

replaced by the corresponding value from a household member.
0.01 (1%)

Note: The default value of 0.01 applies to most datasets. However, the default value is 0.0 for the SSN column in the
W2 & 1099 dataset since SSNs are already subject to “borrow a social security number” noise in that dataset, and is
also 0.0 for the SSN column in the SSA dataset because that column has no noise by default.

32 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Use a nickname

Many people, when filling out forms or survey answers, choose to use nicknames instead of their legal names. A
common example is an Alexander who chooses to go by Alex.

The “Use a nickname” noise type in pseudopeople simulates these kinds of responses for first and middle names.
In order to do this, we used a list of 1,080 names and their relevant nicknames, from a project by Old Dominion
University’s Web Science and Digital Libraries Research Group. You can read more about the list of nicknames in the
group’s GitHub repository.

Instead of the person’s legal name, pseudopeople selects the subset of simulated individuals who are eligible for a
nickname (i.e., those whose legal first or middle name is included in the nicknames list detailed above), then replaces
each selected simulant’s first name with any of the nicknames included in the csv file.

This noise type is called use_nickname in the configuration. It takes one parameter:

Table 18: Parameters to the use_nickname noise type

Parameter Description Default
cell_probabilityThe probability that, for a cell in the first_name column, a nickname is recorded. 0.01 (1%)

Use a fake name

Sometimes when people respond to a survey or fill out a form, they don’t want to share their personal information. If
the survey or form (whether online, on paper, or in person) requires a response, they might just make something up.

The “Use a fake name” noise type in pseudopeople simulates these kinds of responses for first and last names. Instead
of the person’s real name, pseudopeople records a randomly selected value from the “List of First Names Considered
Fake or Incomplete” (for first names) or the “List of Last Names Considered Fake or Incomplete” (for last names) found
in the NORC assessment of the Census Bureau’s Person Identification Validation System.

This noise type is called use_fake_name in the configuration. It takes one parameter:

Table 19: Parameters to the use_fake_name noise type

Parameter Description Default
cell_probabilityThe probability that, for a cell in the column (either first or last name), a fake name

is recorded.
0.01 (1%)

Swap month and day

Swap month and day is a noise type that only applies to dates. It occurs when someone swaps the month and day to be
in the incorrect position (e.g., December 8, 2022 would be listed in MM/DD/YYYY format as 08/12/2022).

This noise type is called swap_month_and_day in the configuration. It takes one parameter:

Table 20: Parameters to the swap_month_and_day noise type

Parameter Description Default
cell_probabilityThe probability of a cell date having its month and day swapped. 0.01 (1%)

2.4. Noise 33

https://github.com/carltonnorthern/nicknames
https://web.archive.org/web/20230705005935/https://www.norc.org/content/dam/norc-org/pdfs/PVS%20Assessment%20Report%20FINAL%20JULY%202011.pdf

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Misreport age

When someone reports their age in years, or especially when someone reports the age of someone else such as a family
member, they may not get the value exactly right. For this type of simulated noise, the reported age is off by some
amount, for example a year or two older or younger than the person actually is.

This noise type is called misreport_age in the configuration. It takes two parameters:

Table 21: Parameters to the misreport_age noise type

Parame-
ter

Description Default

cell_probabilityThe probability of each age value being misreported. 0.01 (1%)
possible_age_differencesOne of two options:

• A list of possible differences to add to the true age to get
the misreported age. A negative number means that the
reported age is too young, while a positive number means
it is too old. Each difference is equally likely.

• A dictionary, where the keys are the possible differences
and the values are the probabilities of those differences.
This is like the list option, except that it allows some age
differences to be more likely than others. The probabili-
ties must add up to 1.

Zero (no change) is not allowed as a possible difference.

{-2: 0.1, -1: 0.4, +1: 0.4, +2: 0.1}

We assume that age would never be incorrectly reported as a negative number. In rare cases where applying the
configured difference value would result in a negative age, we reflect this age back to positive (e.g. -2 becomes 2).
This means there is still a spread of errors (they don’t “bunch up” at zero). If this reflection would cause the age to be
correct, we instead make the reported age one year younger than the true age.

Write the wrong digits

Sometimes people may write the wrong number for numeric data such as a street number, date, or social security
number. This could be intentional or accidental. pseudopeople simulates this type of noise in fields that include
numbers by randomly replacing some digits with different digits selected uniformly at random.

This noise type is called write_wrong_digits in the configuration. It takes two parameters:

Table 22: Parameters to the write_wrong_digits noise type

Parameter Description Default
cell_probabilityThe probability that any given cell in the column will be selected to be eligible for

this type of noise.
0.01 (1%)

token_probabilityThe conditional probability, given that a numeric cell has been selected for noise
eligibility, that any given digit in the true number will be replaced by a different
digit.

0.1 (10%)

34 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Write the wrong ZIP code digits

When reporting a ZIP code on a survey or form, people may misremember or misreport the digits. They are probably
more likely to do this for the last few digits (which identify the small, specific area) than the first few (which will be
the same over a larger area). The “Write the wrong ZIP code digits” noise type is just like “Write the wrong digits”
except that it can capture this difference between digits in different positions. The ZIP code column uses this noise type
instead of “Write the wrong digits” for this reason.

This noise type is called write_wrong_zipcode_digits in the configuration. It takes two parameters:

Table 23: Parameters to the write_wrong_zipcode_digits noise type

Parame-
ter

Description Default

cell_probabilityThe probability of a cell being considered to have this noise
type. One way to think about this is the probability that a ZIP
code is reported by someone who isn’t sure of their ZIP code.
Whether or not there are actually any errors depends on the next
parameter.

0.01 (1%)

digit_probabilitiesA list of five probabilities, one for each digit in a (5-digit) ZIP
code. The first value in this list is the probability that the first
digit of the ZIP code will be wrong given that the cell is being
considered for this noise type. The second value in the list is
the corresponding probability for the second digit, and so on.

[0.04, 0.04, 0.20, 0.36, 0.36]

Make phonetic errors

A phonetic error occurs when a character is misheard. For instance, this could happen with similar sounding letters
when spoken (like ‘t’ and ‘d’) or letters that make the same sounds within a word (like ‘o’ and ‘ou’).

pseudopeople defines the possible phonetic substitutions using this file, which was produced by the GeCO project.

This noise type is called make_phonetic_errors in the configuration. It takes two parameters:

Table 24: Parameters to the make_phonetic_errors noise type

Parameter Description Default
cell_probabilityThe probability of a cell being considered to have this noise type. One way to think

about this is the probability that a string is transcribed by an error-prone program
or human transcriber. Whether or not there are actually any errors depends on the
next parameter.

0.01 (1%)

token_probabilityThe probability of each corruption-eligible token being misheard given that the
cell is being considered for this noise type. One way to think about this is the
probability of a phonetic error on any given corruption-eligible token when the
transcriber is error-prone.

0.1 (10%)

2.4. Noise 35

https://github.com/ihmeuw/pseudopeople/blob/develop/src/pseudopeople/data/phonetic_variations.csv
https://dl.acm.org/doi/10.1145/2505515.2508207

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Make optical character recognition (OCR) errors

An optical character recognition (OCR) error is when a string is misread for another string that is visually similar.
Some common examples are ‘S’ instead of ‘5’ and ‘m’ instead of ‘iii’.

pseudopeople defines the possible OCR substitutions using this CSV file, which was produced by the GeCO project. In
the file, the first column is the real string (which we call a “token”) and the second column is what it could be misread
as (a “corruption”). The same token can be associated with multiple corruptions.

To implement this, we first select the rows to noise, as in other noise types. For those rows, each corruption-eligible
token in the relevant string is selected to be corrupted or not, according to the token noise probability. Each token
selected for corruption is replaced with its corruption according to the above CSV file (choosing uniformly at random
in the case of multiple corruption options for a single token), unless a token with any overlapping characters (in the
original string) has already been corrupted.

Note: Tokens are corrupted in the order of the location of their first character in the original string, from beginning
to end, breaking ties (e.g. ‘l’ and ‘l>’ are both corruption-eligible tokens and may start on the same ‘l’) by corrupting
longer tokens first. Note that in an example abcd where ab, bc, and cd have all been selected to be corrupted, the
corruption of ab prevents the corruption of bc from occurring, which then allows cd to be corrupted even though it
overlapped with bc.

This noise type is called make_ocr_errors in the configuration. It takes two parameters:

Table 25: Parameters to the make_ocr_errors noise type

Parameter Description Default
cell_probabilityThe probability of a cell being considered to have this noise type. One way to think

about this is the probability that a string is read by an inaccurate OCR program or
human reader. Whether or not there are actually any errors depends on the next
parameter.

0.01 (1%)

token_probabilityThe probability of each corruption-eligible token being misread given that the
cell is being considered for this noise type. One way to think about this is the
probability of an OCR error on any given corruption-eligible token when a string
is being read inaccurately.

0.1 (10%)

Make typos

Typos occur in survey and administrative datasets when someone – a survey respondent, a canvasser, or someone
entering their own information on a form – types a value incorrectly.

Currently, pseudopeople implements two kinds of typos: inserting extra characters directly preceding characters that
are adjacent on a keyboard, or replacing a character with one that is adjacent. When pseudopeople introduces typos,
10% of them are inserted characters, while the other 90% are replaced characters. This is currently not configurable.
In either kind of typo, all adjacent characters are equally likely to be chosen.

To define “adjacent”, we use a grid version of a QWERTY keyboard layout (left-justified, which is not exactly accurate
to most keyboards’ half-key-offset layout) and accompanying number pad. This approach is inspired by the GeCO
project, with some changes to include capital letters and have a complete numberpad. Two characters are considered
adjacent if they are touching, either on a side or diagonally:

qwertyuiop
asdfghjkl

(continues on next page)

36 Chapter 2. What’s next?

https://github.com/ihmeuw/pseudopeople/blob/develop/src/pseudopeople/data/ocr_errors.csv
https://dl.acm.org/doi/10.1145/2505515.2508207

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

(continued from previous page)

zxcvbnm

QWERTYUIOP
ASDFGHJKL
ZXCVBNM

789
456
123
0

Note that there are empty lines above, which separate the parts. Therefore, a number is never replaced by a letter (or
vice versa), and a capital letter is never replaced by a lowercase letter (or vice versa). There are currently no typos
involving special characters.

This noise type is called make_typos in the configuration. It takes two parameters:

Table 26: Parameters to the make_typos noise type

Parameter Description Default
cell_probabilityThe probability of a cell being considered to have this noise type. One way to

think about this is the probability that a value is typed carelessly. Whether or not
there are actually any errors depends on the next parameter.

0.01 (1%)

token_probabilityThe probability of each character (which we call a “token”) having a typo given
that the cell is being considered for this noise type. One way to think about this
is the probability of a typo on any given character when the value is being typed
carelessly.

0.1 (10%)

2.5 Configuration

You can customize the noise in the datsets the pseudopeople package generates. This allows you to explore different
scenarios and see how sensitive entity resolution methods are to the types and levels of noise present in their input data.

2.5.1 Overriding defaults

Noise is configurable at a very fine-grained level. It can be customized separately for each dataset and noise type.
Column-based noise types can additionally have different settings for each column.

Due to this fine-grained control, there are a very large number of settings. It is not necessary to configure everything.
pseudopeople includes reasonable default noise settings and your configuration can override as few or as many of
the default values as you like. You can also pass the special value pseudopeople.NO_NOISE, which prevents all
configurable noise types from occurring at all.

To learn more about the default settings, see Noise Type Details. You can access the defaults from your Python code
by calling the pseudopeople.get_config() function.

2.5. Configuration 37

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.5.2 Configuration structure

Configuration can be supplied as a nested Python dictionary, or as a YAML file. In either case, the structure is the
same:

• The top-level keys are the datasets.

• Within each of these are keys for the categories of noise: row-based and column-based.

• For column-based noise-only, the next layer of keys is for the columns in the dataset.

• Nested within these are keys for the individual noise types.

• Finally, each noise type has parameters.

As an example, say we wanted to change the cell probability parameter (which is the probability of a cell being wrong) of
the Choose the wrong option noise type, for the sex column of the Decennial Census dataset. Here are the configurations
to do this in Python and YAML, respectively:

config = {
'decennial_census': { # Dataset

'column_noise': { # "Choose the wrong option" is in the column-based noise␣
→˓category

'sex': { # Column
'choose_wrong_option': { # Noise type

'cell_probability': 0.05, # Parameter (and value)
},

},
},

},
}

decennial_census: # Dataset
column_noise: # "Choose the wrong option" is in the column-based noise category

sex: # Column
choose_wrong_option: # Noise type

cell_probability: 0.05 # Parameter (and value)

Row-based noise is similar, except that there is no key to specify the column, since it is not column-specific. For
example to change the probability of nonresponse in the Decennial Census, the configuration would be:

config = {
'decennial_census': { # Dataset

'row_noise': { # "Omit a row" is in the row-based noise category
'do_not_respond': { # Noise type

'row_probability': 0.05, # Parameter (and value)
},

},
},

}

decennial_census: # Dataset
row_noise: # "Omit a row" is in the row-based noise category

do_not_respond: # Noise type
row_probability: 0.05 # Parameter (and value)

38 Chapter 2. What’s next?

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

2.5.3 How to pass configuration to pseudopeople

Each of pseudopeople’s dataset generation functions takes a config argument. This argument can be passed either
a Python dictionary, the path to a YAML file, or the special value pseudopeople.NO_NOISE, which prevents all
configurable noise types from occurring at all.

2.5.4 Configurable parameters

The noise types that can be configured, and the parameters of each, are listed in the Noise Type Details section.

2.6 API Reference

This section of the docs describes the details of how to use each function included in pseudopeople. These functions
make up pseudopeople’s public Application Programming Interface (API). If you are a new user, you may want to start
with the Quickstart guide instead.

2.6.1 Dataset Generation Functions

Each of the following functions generates one of the simulated datasets documented on the Datasets page. For example,
pseudopeople.generate_decennial_census() generates the Decennial Census dataset.

All of the dataset generation functions have the same (optional) parameters. Notable parameters include:

• a source path to the root directory of pseudopeople simulated population data (defaults to using the sample
population included with pseudopeople).

• a config path to a YAML file, a Python dictionary, or the special value pseudopeople.NO_NOISE, to override
the default configuration.

• a year (defaults to 2020).

For applied examples of using these functions, see the Quickstart and tutorials.

pseudopeople.generate_american_community_survey(source=None, seed=0, config=None, year=2020,
state=None, verbose=False)

Generates a pseudopeople ACS dataset which represents simulated responses to the ACS survey.

The American Community Survey (ACS) is an ongoing household survey conducted by the US Census Bureau
that gathers information on a rolling basis about American community populations. Information collected in-
cludes ancestry, citizenship, education, income, language proficiency, migration, employment, disability, and
housing characteristics.

Parameters

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

2.6. API Reference 39

https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

• year (int | None) – The year for which to generate simulated American Community Sur-
veys of the simulated population (format YYYY, e.g., 2036); the simulated dataset will con-
tain records for surveys conducted on any date in the specified year. Default is 2020. If None
is passed instead, data for all available years are included in the returned dataset.

• state (str | None) – The US state for which to generate simulated American Community
Surveys of the simulated population, or None (default) to generate data for all available US
states. The returned dataset will contain survey data for simulants living in the specified state
during the specified year. Can be a full state name or a state abbreviation (e.g., “Ohio” or
“OH”).

• verbose (bool) – Log with verbosity if True. Default is False.

Returns
A pandas.DataFrame of simulated ACS data.

Raises

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
state.

Return type
DataFrame

pseudopeople.generate_current_population_survey(source=None, seed=0, config=None, year=2020,
state=None, verbose=False)

Generates a pseudopeople CPS dataset which represents simulated responses to the CPS survey.

The Current Population Survey (CPS) is a household survey conducted by the US Census Bureau and the US
Bureau of Labor Statistics. This survey is administered by Census Bureau field representatives across the country
through both personal and telephone interviews. CPS collects labor force data, such as annual work activity and
income, veteran status, school enrollment, contingent employment, worker displacement, job tenure, and more.

Parameters

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

• year (int | None) – The year for which to generate simulated Current Population Surveys
of the simulated population (format YYYY, e.g., 2036); the simulated dataset will contain
records for surveys conducted on any date in the specified year. Default is 2020. If None is
passed instead, data for all available years are included in the returned dataset.

• state (str | None) – The US state for which to generate simulated Current Population
Surveys of the simulated population, or None (default) to generate data for all available US
states. The returned dataset will contain survey data for simulants living in the specified state
during the specified year. Can be a full state name or a state abbreviation (e.g., “Ohio” or
“OH”).

• verbose (bool) – Log with verbosity if True. Default is False.

40 Chapter 2. What’s next?

https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Returns
A pandas.DataFrame of simulated CPS data.

Raises

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
state.

Return type
DataFrame

pseudopeople.generate_decennial_census(source=None, seed=0, config=None, year=2020, state=None,
verbose=False)

Generates a pseudopeople decennial census dataset which represents simulated responses to the US Census
Bureau’s Census of Population and Housing.

Parameters

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

• year (int | None) – The year for which to generate a simulated decennial census of the
simulated population (format YYYY, e.g., 2030). Must be a decennial year (e.g., 2020, 2030,
2040). Default is 2020. If None is passed instead, data for all available years are included in
the returned dataset.

• state (str | None) – The US state for which to generate a simulated census of the simu-
lated population, or None (default) to generate data for all available US states. The returned
dataset will contain data for simulants living in the specified state on Census Day (April 1)
of the specified year. Can be a full state name or a state abbreviation (e.g., “Ohio” or “OH”).

• verbose (bool) – Log with verbosity if True. Default is False.

Returns
A pandas.DataFrame of simulated decennial census data.

Raises

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
state.

Return type
DataFrame

pseudopeople.generate_social_security(source=None, seed=0, config=None, year=2020, verbose=False)
Generates a pseudopeople SSA dataset which represents simulated Social Security Administration (SSA) data.

Parameters

2.6. API Reference 41

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

• year (int | None) – The final year of simulated social security records to include in the
dataset (format YYYY, e.g., 2036); will also include records from all previous years. Default
is 2020. If None is passed instead, data for all available years are included in the returned
dataset.

• verbose (bool) – Log with verbosity if True. Default is False.

Returns
A pandas.DataFrame of simulated SSA data.

Raises

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
any prior years.

Return type
DataFrame

pseudopeople.generate_taxes_1040(source=None, seed=0, config=None, year=2020, state=None,
verbose=False)

Generates a pseudopeople 1040 tax dataset which represents simulated tax form data.

Parameters

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

• year (int | None) – The tax year for which to generate records (format YYYY, e.g., 2036);
the simulated dataset will contain the 1040 tax forms filed by simulants for the specified year.
Default is 2020. If None is passed instead, data for all available years are included in the
returned dataset.

• state (str | None) – The US state for which to generate tax records from the simulated
population, or None (default) to generate data for all available US states. The returned dataset
will contain 1040 tax forms filed by simulants living in the specified state during the specified
tax year. Can be a full state name or a state abbreviation (e.g., “Ohio” or “OH”).

• verbose (bool) – Log with verbosity if True. Default is False.

Returns
A pandas.DataFrame of simulated 1040 tax data.

Raises

42 Chapter 2. What’s next?

https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
state.

Return type
DataFrame

pseudopeople.generate_taxes_w2_and_1099(source=None, seed=0, config=None, year=2020, state=None,
verbose=False)

Generates a pseudopeople W2 and 1099 tax dataset which represents simulated tax form data.

Parameters

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

• year (int | None) – The tax year for which to generate records (format YYYY, e.g., 2036);
the simulated dataset will contain the W2 & 1099 tax forms filed by simulated employers for
the specified year. Default is 2020. If None is passed instead, data for all available years are
included in the returned dataset.

• state (str | None) – The US state for which to generate tax records from the simulated
population, or None (default) to generate data for all available US states. The returned dataset
will contain W2 & 1099 tax forms filed for simulants living in the specified state during the
specified tax year. Can be a full state name or a state abbreviation (e.g., “Ohio” or “OH”).

• verbose (bool) – Log with verbosity if True. Default is False.

Returns
A pandas.DataFrame of simulated W2 and 1099 tax data.

Raises

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
state.

Return type
DataFrame

pseudopeople.generate_women_infants_and_children(source=None, seed=0, config=None, year=2020,
state=None, verbose=False)

Generates a pseudopeople WIC dataset which represents a simulated version of the administrative data that would
be recorded by WIC. This is a yearly file of information about all simulants enrolled in the program as of the end
of that year.

The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) is a government benefits
program designed to support mothers and young children. The main qualifications are income and the presence
of young children in the home.

2.6. API Reference 43

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Parameters

• source (Path | str) – The root directory containing pseudopeople simulated population
data. Defaults to using the included sample population when source is None.

• seed (int) – An integer seed for randomness. Defaults to 0.

• config (Path | str | Dict[str, Dict]) – An optional override to the default con-
figuration. Can be a path to a configuration YAML file, a configuration dictionary, or the
sentinel value pseudopeople.NO_NOISE, which will generate a dataset without any config-
urable noise.

• year (int | None) – The year for which to generate WIC administrative records (format
YYYY, e.g., 2036); the simulated dataset will contain records for simulants enrolled in WIC
at the end of the specified year (or on May 1, 2041 if year=2041 since that is the end date
of the simulation). Default is 2020. If None is passed instead, data for all available years are
included in the returned dataset.

• state (str | None) – The US state for which to generate WIC administrative records from
the simulated population, or None (default) to generate data for all available US states. The
returned dataset will contain records for enrolled simulants living in the specified state at the
end of the specified year (or on May 1, 2041 if year=2041 since that is the end date of the
simulation). Can be a full state name or a state abbreviation (e.g., “Ohio” or “OH”).

• verbose (bool) – Log with verbosity if True. Default is False.

Returns
A pandas.DataFrame of simulated WIC data.

Raises

• ConfigurationError – An invalid config is provided.

• DataSourceError – An invalid pseudopeople simulated population data source is provided.

• ValueError – The simulated population has no data for this dataset in the specified year or
state.

Return type
DataFrame

2.6.2 Working with the Configuration

The pseudopeople configuration contains a very large number of settings. It may be easier in some situations to interact
with the configuration programmatically in Python, rather than by creating a configuration dictionary or YAML file by
hand. For example, if you wanted to double the cell probability parameter of every noise type in every column, or set
all noise types to zero except one to isolate the effect of a specific type of noise, it would be easier to access the defaults
as a data structure in Python and modify them that way.

We currently have one function that facilitates this kind of use of the configuration, shown below. We may add more
functionality in this area in a future release of pseudopeople.

pseudopeople.get_config(overrides=None)
Function that returns the pseudopeople configuration containing all default values. To get the default probability
of nonresponse in the Decennial Census dataset:

>>> import pseudopeople as psp
>>> psp.get_config()['decennial_census']['row_noise']['do_not_respond']
{'row_probability': 0.0145}

44 Chapter 2. What’s next?

https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

To view that same part of the configuration after applying a user override:

>>> overrides = {'decennial_census': {'row_noise': {'do_not_respond': {'row_
→˓probability': 0.1}}}}
>>> psp.get_config(overrides)['decenial_census']['row_noise']['do_not_respond']
{'row_probability': 0.1}

Parameters
overrides (Path | str | Dict) – An optional set of overrides to the default configuration.
Can be a (nested) Python dictionary mapping noise type parameters to the desired override values,
a path to a YAML file with the same nested structure (see the configuration structure section of
the documentation for details), or the special sentinel value pseudopeople.NO_NOISE, which will
return a configuration in which all configurable noise is set to zero. When passing a dictionary or
YAML file, it is not necessary to provide a complete configuration; any configuration parameters
not specified in overrides will be filled in with the default values.

Returns
A complete configuration dictionary.

Raises
ConfigurationError – An invalid configuration is passed with overrides.

Return type
Dict

2.7 Glossary

Configuration
Settings that allow you to customize the noise present in the datasets generated by pseudopeople. Noise is
configurable at a very fine-grained level, with settings specific to the dataset, noise type, and column (where
applicable).

Datasets
The types of data that can be simulated with pseudopeople, each of which is the simulated analog of a “real world”
database from a census, survey, or administrative source. For example, pseudopeople’s American Community
Survey (ACS) dataset is analogous to the data that would be collected by that survey in real life.

Entity resolution (ER)
The task of identifying the unique entities associated with a set of records, where multiple records may refer to
the same entity. Also called “record linkage,” among other names.

Noise
Errors introduced to a pseudopeople dataset. These simulate data errors that would be found in real-life survey
and administrative data.

Noise types
The types of error that can be introduced to a pseudopeople dataset. Each one simulates a specific type of mistake
or inaccuracy that could occur in a real-life data collection or generation process. For example, one of the noise
types in pseudopeople is a simulant choosing the wrong option from a list of choices on a form.

Probabilistic record linkage (PRL)
Entity resolution (“record linkage”) methods that internally use probabilities of some kind to represent uncer-
tainty about which records belong to which entities.

Record linkage
Another term for entity resolution.

2.7. Glossary 45

https://docs.python.org/3.8/library/pathlib.html#pathlib.Path
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Dict
https://docs.python.org/3.8/library/typing.html#typing.Dict

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

Simulant
A simulated person represented in a pseudopeople-generated dataset.

46 Chapter 2. What’s next?

BIBLIOGRAPHY

[Census_PES] Bureau, US Census. March 10, 2022. “Detailed Coverage Estimates for the 2020 Census Released
Today.” Census.Gov. Accessed September 29, 2022. https://www.census.gov/library/stories/2022/03/
who-was-undercounted-overcounted-in-2020-census.html.

[Response_Rates_BLS] “Household and Establishment Survey Response Rates: U.S. Bureau of Labor Statistics.” n.d.
Accessed October 11, 2022. https://www.bls.gov/osmr/response-rates/home.htm.

47

https://www.census.gov/library/stories/2022/03/who-was-undercounted-overcounted-in-2020-census.html
https://www.census.gov/library/stories/2022/03/who-was-undercounted-overcounted-in-2020-census.html
https://www.bls.gov/osmr/response-rates/home.htm

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

48 Bibliography

PYTHON MODULE INDEX

p
pseudopeople, 39

49

pseudopeople Documentation, Release 1.0.1.dev7+g6d51849

50 Python Module Index

INDEX

C
Configuration, 45

D
Datasets, 45

E
Entity resolution (ER), 45

G
generate_american_community_survey() (in mod-

ule pseudopeople), 39
generate_current_population_survey() (in mod-

ule pseudopeople), 40
generate_decennial_census() (in module pseu-

dopeople), 41
generate_social_security() (in module pseudopeo-

ple), 41
generate_taxes_1040() (in module pseudopeople), 42
generate_taxes_w2_and_1099() (in module pseu-

dopeople), 43
generate_women_infants_and_children() (in mod-

ule pseudopeople), 43
get_config() (in module pseudopeople), 44

M
module

pseudopeople, 39

N
Noise, 45
Noise types, 45

P
Probabilistic record linkage (PRL), 45
pseudopeople

module, 39

R
Record linkage, 45

S
Simulant, 46

51

	Quickstart
	What’s next?
	Tutorials
	Configuring Noise
	The problem of fake names
	Generating a simulated Current Population Survey
	Increasing noise in first names
	An alternate format for configuration

	Datasets
	US Decennial Census
	American Community Survey (ACS)
	Current Population Survey (CPS)
	Women, Infants, and Children (WIC)
	Social Security Administration
	Tax forms: W-2 & 1099
	Tax form: 1040

	Simulated populations
	Accessing the large-scale simulated populations
	Validating the simulated population data
	Using the simulated population data

	Noise
	Categories of noise
	Available noise types
	Noise types for each column
	Noise type details
	Row-based Noise
	Duplicate with guardian
	Do not respond
	Omit a row

	Column-based Noise
	Borrow a social security number
	Leave a field blank
	Choose the wrong option
	Copy from household member
	Use a nickname
	Use a fake name
	Swap month and day
	Misreport age
	Write the wrong digits
	Write the wrong ZIP code digits
	Make phonetic errors
	Make optical character recognition (OCR) errors
	Make typos

	Configuration
	Overriding defaults
	Configuration structure
	How to pass configuration to pseudopeople
	Configurable parameters

	API Reference
	Dataset Generation Functions
	Working with the Configuration

	Glossary

	Bibliography
	Python Module Index
	Index

